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The motion induced in a layer of Boussinesq fluid by moving periodic thermal 
waves is obtained by numerically solving the complete nonlinear two-dimensional 
momentum and temperature equations. Three sets of boundary conditions are 
treated: rigid upper and lower boundaries with symmetrical heating; free upper 
boundary and rigid lower boundary with heating only at the top; free upper and 
lower boundaries with symmetrical heating. The nonlinear streamline patterns 
show that, when the velocity fluctuations are larger than the phase speed of the 
thermal wave and the mean flow, the convection cells have shapes governed by 
fluctuating nonlinear interactions. Significant mean velocities can be created 
even without the characteristic tilt in the convection cells expected on the basis 
of linear theory. Nonlinear interactions can lead to a mean shear even in the 
absence of motion of the thermal source. When the viscous diffusion time across 
the fluid layer is less than or of the same order as the period of the thermal wave, 
the order of magnitude of the induced mean velocity does not exceed that of the 
phase speed of the wave, even for intense thermal forcing. 

1. Introduction 
The situation in which a travelling thermal wave can generate a mean shear 

within a layer of fluid has interest both as a purely fluid-dynamical problem and 
as a possible explanation for the observed four-day retrograde zonal motion of 
the upper atmosphere of Venus. A significant body of literature discussing mean 
flows induced by thermal waves exists, but the treatments have been mainly 
limited to thelinear regime, or to situations wherein the mean-field approximation 
to the Navier-Stokes equations could be applied. 

Linear treatments of the problem have been carried out by Stern (1959), 
Davey (1967), Malkus (1970), Kelly & Vreeman (1970), Schubert, Young & 
Hinch (1970), Hinch & Schubert (1971) and Whitehead (1971). The results of 
these linear investigations have shown that the mean flow induced in a layer of 
fluid by a travelling thermal wave is proportional to the square of the amplitude 
of the wave. The mean shear is supplied by correlations of the fluctuating 
components of the horizontal and vertical velocities, these correlations giving 
rise to a transport of horizontal momentum in the direction of the mean shear. 

Some nonlinear aspects of the problem have been treated using the mean-field 
11-2 
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approximation to the Navier-Stokes equations (Schubert 1969; Hinch & 
Schubert 1971). The mean-field approximation involves assuming that the mean 
flow is large compared with the velocity fluctuations, neglecting the nonlinear 
interactions involving the fluctuating quantities, but retaining the nonlinear 
interactions of mean quantities with fluctuating ones. The analysis by Schubert 
(1969) considered situations where the thermal forcing was large, but unfortu- 
nately the amplitude of the horizontal velocity fluctuation in these instances was 
of the same order as the mean flow, probably rendering the mean-field approxi- 
mation invalid. In the investigation by Hinch & Schubert (1971) there were 
restrictions limiting the thermal wave amplitude, however, it was found that the 
mean flow could still be larger than the phase speed of the thermal wave when the 
fluid viscosity was sufficiently small. 

It is the purpose of the present study to investigate the possibility of producing 
large mean flows when the thermal forcing becomes large but the fluid viscosity is 
not necessarily small. Further, we wish to observe the effects of different boundary 
conditions on the flow field, because not only can the qualitative behaviour of the 
mean velocity be affected by boundary conditions, but the entire flow pattern can 
exhibit interesting differences. The model we consider is a two-dimensional, 
horizontally infinite layer of fluid bounded above and below by plane surfaces. 
The full nonlinear Boussinesq two-dimensional momentum and temperature 
equations are solved numerically for the following three sets of boundary condi- 
tions: (i) rigid top and bottom boundaries with heating applied symmetrically at 
the boundaries; (ii) free top and bottom boundaries with heating applied sym- 
metrically at the boundaries; (iii) free upper boundary, rigid lower boundary and 
heating only at the top. Thereason for choosing the first set of boundary conditions 
was that the results of Hinch & Schubert (1971) showed that under the conditions 
for which their analysis is valid the mean velocity is still proportional to the 
square of the thermal wave amplitude well beyond the linear regime. It appeared, 
therefore, that it might be possible to extend the linear expressions for the mean 
velocity to very nonlinear situations. The second set of boundary conditions 
was chosen for comparison with the rigid-rigid case. The third set of boundary 
conditions is of interest because of the results of Schubert et al. (1970), namely 
that for these conditions the mean velocity changes sign depending on the 
ratio of the diffusion rate of temperature to the diffusion rate of momentum. 

A formal statement of the problem is presented in $ 2 ,  followed by a description 
of the numerical procedure in 3 3. Section 4 gives the range of parameter values 
considered and 3 5 discusses general aspects of the flow field. Sections 6-10 present 
the nonlinear results. 

2. Detailed model 
The basic model investigated is shown in figure 1. An initially isothermal layer 

of Boussinesq fluid of thickness d extending to & coin the x direction is subjected 
to a periodic travelling thermal wave of the form A cos (7cx + at), A being measured 
from the constant initial temperature of the fluid, and k and w being, respectively, 
the wavenumber and angular frequency of the wave. Let the velocity be 
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FIGURE 1. Model geometry. h is the wavelength of the thermal wave. 

u = (u, 0, w). The equations of motion are formulated in terms of a stream func- 
tion 9 and the vorticity R. 

u = -a$/az, w = a$lax, (2.1) 

(2.2) 

v29 = -0, (2.3) 

R = aulaz - awlax. 

The equations of motion, together with the temperature equation, are 

asz a(un) a(wn)  aT 
az ax at ax +- = -ga:-+vv2cl, - +- 

aT a(uT) a(wT) +- = K V ~ T ,  -+- az at ax 

where T is the temperature, g the gravitational acceleration, a: the thermal 
coefficient of expansion, v the kinematic viscosity and K the thermal diffusivity. 

If the vorticity equation is averaged over a wavelength in the x direction 
(averaged quantities being denoted by a bar), we get 

where = a5/az is the mean shear. The mean flow is thus produced by corre- 
lations of the fluctuating components of the velocity, i.e. by Reynolds stresses 
set up within the fluid. In the steady state this momentum transport of the 
Reynolds stresses must be balanced by the viscous diffusion of mean momentum. 
A similar equation can be derived for the mean temperature p :  

aT a -  a2T 

at ax ax2 
-+-(wT) = K- .  

The three sets of boundary conditions considered are the following. 

(i) Rigid-rigid : 
u = w = 0 at z = O,d, 
T = Acos(Icx+wt) at z = 0,d. 

w = duldz = 0 at x = O,d, 

1 
(ii) Free-free : 

T = Acos(kX+ot) at z = 0,d. 
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(iii) Free-rigid 
(duldz = 0 at z = d,  

w = \  u=0 at Z = O ,  

Acos(kx+wt) at  z = d ,  
0 at  z = 0. 

T = {  
(2.10) 

The problem is non-dimensionalized using w-l as the time scale, E-l as the 
horizontal length scale, d as the vertical length scale and A as the temperature 
scale; this yields the four dimensionless parameters 

P = ( g d / u i ) d ,  8 = Wd2/v, P = V / K ,  p = kd, 

where u,, = w / k .  The parameter P represents the ratio of buoyancy forces to 
inertial forces, S is 2n times the ratio of the viscous diffusion time across the fluid 
layer to the period of the wave, P is the Prandtl number and p is 2n times the 
ratio of the fluid-layer thickness to  the wavelength of the wave. - 

The governing iion-dimensional equations are (a being scaled with u,,/d, 

(2.11) $ scaled with uod) Vj$ = -Q, 

aT q u ~ )  a ( w q  i 
+ a x = X P  at ax - Q2T,  -+- 

(2.13) 

(2.14) 

where Q$ = p2(a2/ax2) + (a2/az2). In  order to facilitate determination of when the 
steady state was reached, the equations were solved in the frame of reference 
moving with the applied thermal wave. Henceforth all variables are understood 
to be dimensionless. 

3. Numerical procedure 
Most of the numerical techniques used are described in some detail by Torrance 

(1968) and Torrance & Rockett (1969). The reader is therefore referred to these 
papers for discussion of many statements in this section not specifically 
referenced. 

The grid system used is shown in figure 2. All quantities were evaluated at 
each grid point. All linear spatial derivatives were approximated by standard 
three-point central differences, while the time derivatives were approximated by 
one-sided forward differences. With x = (i - 1) Ax, x = ( j  - 1) Az, the vertical 
convective derivative was approximated by a centred difference 

This form of differencing is stable if Ax 2 S/Sw at any grid point (assuming 
P 6 1 ) ;  for the range of parameter values considered in this study the stability 
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FIGURE 2. Numerical grid system. 

:=O, j =  1 X-X x+ 

condition was satisfied. The criterion for the same form of differencing in the 
horizontal is Ax 7 Spz/Su. Since u is O(1) or larger and p is small it  was not 
feasible to satisfy this criterion for the values of S which we wanted to consider. 
Hence we approximated the horizontal convective derivative by 

when (ug+(, + ui, i) and (ui, + ui-l, j) were positive and by 

when the same quantities were negative. When one was positive and the other 
negative an appropriate combination was used. 

The above form of the horizontal convective derivative worked quite well for 
the cases where there was symmetry in the vertical, for example, when the upper 
and lower surfaces were rigid no-slip boundaries and the thermal fluctuations 
were applied symmetrically to each surface. However, in the free-rigid case 
there were accuracy problems in computing the mean velocity using this con- 
vective approximation. If one does an analysis of this form of the differencing 
it is found that there exist artificial numerical Reynolds stresses of O(Ax). These 
artificial Reynolds stresses result when the finite-difference form of the vorticity 
equation is averaged over a wavelength in the x direction. Evidently, in the 
symmetric cases these errors tend to cancel, but in asymmetric situations they 
do not. Hence, for the free-rigid case it was preferable to use a central difference 
for the horizontal advective term and ensure numerical stability by adding an 
artificial horizontal viscous term of O(Ax). In  fact, this amounts to adding a term 
vN(x) PQ/ax2 to the differential equation governing Q) where v, is the artificial 
viscosity, being proportional to the maximum horizontal velocity at a given x and 
the grid spacing Ax. In  the first difference form mentioned for the horizontal 
advective term there is also an O(Ax) artificial viscous term. The advantage of 
the second form is that the numerical viscosity can be made independent of x,  
so that no artificial Reynolds stress results from this term, i.e. 

The reason for using either of the above forms for the horizontal convective 
differencing is that there is no grid size restriction on Ax necessary to ensure 
numerical stability. 
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Since all quantities are periodic in x it was only necessary to extend one extra 
vertical column of grid points outside the x interval of (0,2n) to handle the 
boundaries at x = 0 and x = 2n. The treatment of the boundaries at z = 0, 1 was 
as follows. Since the stream function is constant in x along z = 0,1 ,$  can be set 
equal to zero at z = 0. However, since there is a mean flow in the problem, $ cannot 
be prescribed at z = 1. From the horizontal momentum equation it is easy to  
show that a$(z= 1) i - - 

= - [fi(z = 0) - fi(z = l)]. 
at S (3.4) 

Since Q = 0 at a free surface, it  is only necessary to consider further the boundary 
values of SZ at rigid surfaces. This was accomplished by expanding $ in a Taylor 
series about the rigid boundary, using the velocity boundary conditions, and 
noting that at  a rigid surface 

aZ$laz2 = - a, (3.5) 

and a31c.laz3 = - anlax. (3.6) 

By approximating aQ/ax by a one-sided difference using the grid point im- 
mediately adjacent to the rigid boundary, the boundary value of i2 was obtained 
to O(Az2) in terms of $ and L2 at the adjacent grid point. There are no problems 
regarding the boundary values of the temperature of course, since these are 
already prescribed. 

The numerical procedure was as follows. Starting from given initial conditions 
the temperature was advanced in time. 

T,,,, = Tt + At [finite-difference approximation of spatial derivatives]. 

Then, using the knownvalues of temperature at t +At, the vorticity equation was 
advanced in time. By averaging the vorticity at the boundaries z = 0 , l  the 
stream function at z = 1 was determined. With the boundary values of $ and 
the interior values of i;l known, the elliptic equation for $ was solved by the 
method of successive over-relaxation. When the current values of the stream 
function and the vorticity at  all interior grid points were known the new values of 
Q at the rigid boundaries could be computed as described above. The new 
velocities required for the convective derivatives were obtained from centred 
differences of the stream function; this completed the cycle. 

The time step at each point was limited by numerical stability considerations. 

when the first form of the horizontal convective derivative was used and 

when the second form of the horizontal convective derivative was used. If the 
Prandtl number is greater than unity, then the factor P does not appear in the 
time restriction. The above inequalities applied to all interior grid points. 
However, a, numerical instability was encountered in obtaining the vorticity at 
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the rigid surfaces, and the elimination of this required reducing the time step 
somewhat from that given in the above criteria. 

The successive over-relaxation method used to solve for the stream function is 
the most time consuming part of the calculation; however, except for the very 
early stages of flow development, @ relaxed to within a specified tolerance limit 
in less than 10 iterations, even for fine grid spacing. Thus successive over- 
relaxation was probably more efficient in this case than solving for @ using fast 
Fourier transforms. The maximum number of interior grid points used in 
obtaining steady-state values was 800 (20 vertical, 40 horizontal). This repre- 
sented what we felt was an acceptable compromise between accuracy and com- 
puter time. Spot checks of accuracy, however, were made using more refined 
grids. 

As a final note on the differencing procedure, it should be pointed out that the 
finite-difference forms of the continuity, vorticity and energy equations are 
conservative, i.e. if the equations are summed over all interior grid points, there 
are, respectively, no false numerical sources or sinks of mass, vorticity, or energy. 

4. Parameter values 
Most of the literature has treated situations where ,8< 1. For comparison 

purposes we also consider a small value of ,8, namely /3 = in all the computa- 
tions. In  the rigid-rigid cases results are presented for P = 0.1 and 1.0. The value 
P = 1.0 is representative of many gases and P = 0-1 was chosen to investigate 
the increase in U as P becomes small. For each value of P, P ranges from 1 to 100 
and S varies from 10 to 50. In certain instances P is extended up to 400. The mean 
velocity in all cases increases as P and S increase. However, to extend the range 
of these parameters accurately to significantly larger values would require con- 
siderable computer time, or in some instances would not be feasible owing to the 
onset of turbulence. Below P = 1.0 or S = 10 new physical effects are not anti- 
cipated, so these seemed reasonable lower limits. 

Except for the Prandtl number, the same parameter values are used for free- 
rigid boundary conditions. In  the linear approximation the critical Prandtl 
number P, for the vertically averaged mean flow ii (ii reverses sign at P = P,, see 
$ 5 )  is between 0.1 and 0.3 when 10 2 S 2 50. Since it is of interest to observe 
nonlinear effects on P,, results for free-rigid boundary conditions are presented 
for P = 0.1. and 0.3. As a comparison with rigid-rigid boundaries using sym- 
metric heating, free-free symmetric heating results are presented only at S = 10, 
P = 1.0, with P varying from 1 to 200. 

In  the following sections of the paper, if the value of S is not specifically given 
the value S = 10 is implied. 

5. General aspects of the flow 
In  this section we briefly summarize particular characteristics of linear theory 

and certain general features of the flow. As mentioned in the introduction, linear 
analysis predicts the velocity fluctuations to be proportional to P and the mean 
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FIGURE 3. Steady-state mean velocity profiles at  F = 100. (a) - - - -, free-free, P = 1.0; 
-, rigid-rigid, P = 1.0; - - - - -, rigid-rigid, P = 0-1. ( b )  - - - - -, free-rigid, 
P = 0.3; - - - - -, free-rigid, P = 0.1. 

flow to be proportional to P2, irrespective of the specific thermal or velocity 
boundary conditions. The velocity fluctuations and the mean velocity are 
independent of p to O(pZ) (when ,8 is small). In  the rigid-rigid case U is everywhere 
greater than or equal to zero for all values of S and P, while for free-free boundary 
conditions 5 is positive at the channel centre but negative at  the horizontal 
boundaries, such that there is no net momentum within the fluid layer. For free- 
free boundaries the fluid can acquire no net momentum if there is none initially. 

According to linear theory the mean flow at a given z in the free-rigid case is 
positive or negative depending on the specific values of X and P. This behaviour 
leads to the existence of a critical Prandtl number P, for the vertically averaged 
mean velocity B. For P < P,, ii > 0 and for P > P,, B < 0. When S is small P, is 
independent of S ,  but when S is large P, varies as S-*. It should be noted that 
when B is positive (negative), part of the mean velocity profile can still be 
negative (positive). 

The general dependence of the mean velocity on S and P in the linear regime 
is quite complicated, but in certain limits the expressions reduce to relatively 
simple algebraic formulae. Since the parameters to be considered in this study do 
not correspond to any of these limits, the algebraic formulae will not be presented 
here, but the interested reader is referred to the papers mentioned in 3 1. 

Figure 3 (a) shows typical steady-state mean velocity profiles for rigid-rigid 
and free-free boundary conditions for F = 100 and different values of P. These 
profiles are symmetric about the channel centre (remember that symmetric 
heating is applied in these cases). Mean velocity profiles for the free-rigid case 
at  F = 100 and P = 0.1, 0.3 are shown in figure 3 (b). The structure of the free- 
rigid profile can probably be explained as being due to the increased influence of 
thermal tilting as the top of the channel is approached (Schubert et al. 1970). As 
the Prandtl number decreases, this effect will be considerably less, and as the 
Prandtl number becomes large the entire profile tends to negative values. 
Because of this 'jet' structure in the free-rigid case, when P is somewhere 
between 0.i  and 0.3, U( 1) can be negative although at  the same time ii is positive. 



Nonlinear motions induced by moving thermal waves 171 

- u 

FIGURE 4. Time development of mean velocity for the free-rigid case F = 100, S = 10, 
p = 0.1. Ratio of the actual time to the time taken to reach the steady state ( t  g 12): 

-I-. __ , +; -.-, g; - - -, 1.0. 
1 2  9 . . . . . . , 

One property that all the profiles have in common is that there is no steady- 
state mean shear at  a rigid surface (by definition of course there is none at a free 
surface). This is not true, however, during the transient flow period, during which 
the fluid is acquiring a net momentum. Figure 4 shows an example of the time 
development of the mean velocity profile during the transient period, the example 
being the free-rigid case with F = 100 and P = 0.1. Note that the mean flow, and 
in particular the mean shear, is negative adjacent to the lower boundary before 
the steady state is reached. If the fluid is to acquire a net positive momentum 
through viscous interaction with a rigid surface, the rigid surface must exert a net 
positive force on the fluid. If the rigid surface corresponds to the lower boundary, 
this is accomplished by having a negative shear there, as can be easily seen from 
(3.4). By noting that $(1) = -G and fi = clii/dz, we get in the rigid-rigid case, 
using the symmetry mentioned before, 

aii -2du 
at s az 

-=-25q aii . 
at m z  s:=o 

---_I - . 

In  the free-rigid case a(1) = 0, hence 

Thus, if aii/at is positive, i.e. if the time rate of change of the net momentum in the 
fluid is positive, then diijdz at z = 0 must be negative. 

From figure 4 it is seen that early in the transient period the mean velocity is 
negative in the upper portions of fluid as well as near the rigid boundary. In  the 
initial stages of flow development, near the top of the fluid thermal tilting of the 
convection cells produces negative Reynolds stresses, and hence a negative Z. 
As positive momentum diffuses up from the lower boundary, U near the top 
gradually becomes positive, reaching its steady-state value on a time scale close 
to the viscous diffusion time of the fluid layer. The symmetric cases reach steady 
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FIGURE 5. Steady-state mean temperature profiles at  P = 100. (a )  - - - -, freefree, 
P = 1.0; , rigid-rigid, P = 1.0; - - - - - -, rigid-rigid, P = 0.1. (a) - --, free- 
rigid, P = 0.3; - - - - - -, free-rigid, P = 0.1. 

state considerably faster, because by symmetry the momentum has to  diffuse 
only to the channel centre. 

In  the steady state, the dimensionless form of (2.7) can be integrated once to 
give 

J o  

Thus the mean temperature gradient at  the boundaries is directly proportional 
to the net amount of work done by the buoyancy force per unit time. 

Figure 5 shows mean temperature profiles for the same cases as in figure 3. 
Over most of the fluid layer there is a stabilizing mean temperature gradient, the 
exceptional regions being adjacent to the boundaries. The maximum absolute 
value of T does not always increase as the quantity SP increases, but does so only 
when SP is ‘small’. As SP becomes large, thermal boundary layers begin to form. 
The fluctuating temperature is then damped in the interior of the fluid, and from 
(5.1) the mean temperature gradient, and hence mean temperature, is small in 
the interior, being identically zero at  the boundaries. 

6. Steady-state streamlines and temperature fields 
In  this section we show steady-state streamline patterns and temperature 

fields in the fixed reference frame of the horizontal boundaries. The flow patterns 
and isotherms are displayed a t  the instant when the phase of the thermal wave is 
zero at  x = 0. The temporal behaviour in the fixed frame is a convection of the 
whole pattern to the left with unit velocity, i.e. II. = $(z + t ,  z) .  The small number 
beside each streamline in figures 6-8 is the value of $ along the streamline, and 
the arrows indicate the fluid velocity direction. The bottom surface corresponds 



Nonlinear motions induced by moving thermal waves 173 

I 
(a) 1 

FIGURE 6. Steady-state streamlines as function of B for rigid-rigid boundary conditions. 
(a) F = 1.0, P = 0.1. (6) H = 100, P = 0.1. (c) B' = 1.0, P = 1.0. (d)  P = 100, P = 1.0. 

to $ = 0, while the upper surface has a constant value consistent with the 
vertically averaged mean flow. Because the aspect ratio /3 is it was necessary 
to distort the geometry when displaying the flow patterns. The reader should 
keep this in mind when comparing vertioal and horizontal length scales over 
which variations in the flow pattern occur. The same comments apply to the 
temperature fields displayed later in this section. 
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FIGURE 7. Steady-state streamlines as function of P for free-free boundary conditions 

with P = 1.0. (a )  P = 1.0. ( b )  F = 100. 

Whenever there is a net momentum within the fluid layer, so that the top 
surface does not correspond to $ = 0,  open streamlines exist. (Only closed 
streamlines are shown in certain instances where the mean velocity is quite 
small.) The dividing streamlines which separate the closed streamlines from the 
open ones are $ = 0 and $ = @(1).  These two streamlines define a ‘channel’, 
shown in most of the streamline figures, through which the entire net horizontal 
mass transport of the fluid occurs, i.e. if one integrates the horizontal velocity 
over a vertical cross-section of the fluid layer from x = 0 to 1, the net horizontal 
mass transport (or net momentum) is the same as if one had just integrated across 
the ‘channel’ defined by the dividing streamlines $ = 0 and $ = $( 1). It should 
be noted this latter region does not always consist of the same fluid particles, 
since @ is time dependent. 

6.1. Nonlinear distortion of convection cells 
Figures 6 (a )  and ( b )  compare the streamline patterns at P = 1.0 and P = I00 for 
rigid-rigid boundary conditions at P = 0.1. Figures 6 ( c )  and ( d )  present a similar 
comparison for the case P = 1.0. The amplitudes of the velocity components, 
fluctuating and mean, are discussed later (see figures 14 and 15, which give plots 
of peak amplitude of the horizontal velocity fluctuation and magnitude of the 
mean flow as functions of P). It can be seen from figures 6 (a) and ( c )  that the 
streamline patterns for P = 0.1 and 1.0 appear similar when P = 1.0, although 
there is a larger phase lag of the flow pattern when P = 1.0. However, at  F = 100 
the streamlines for each Prandtl number do become significantly different in 
appearance. The P = 0.1 convection cells (figure 6 (b) )  are inclined towards the 
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IT 2 w  0 4n ib 
FIGURE 8. Steady-state streamlines as function of F for free-rigid boundary conditions. 
(a) F = 1.0, P = 0.1 (for P = 0-3 streamlines are vary similar). ( b )  F = 100, P = 0.1. 
( c )  F = 100, P = 0.3. 

descending region and this trend becomes more pronounced as P is increased 
beyond 100; when P = 1-0 (figure 6 (d))  there is a small inclination away from the 
descending region. The phase lag for either value of P does not seem to be a very 
sensitive function of P. 

The effect of P on the streamline pattern at constant S and P for free-free 
boundary conditions is shown in figure 7. The inclination of the convection cells 
at P = 100 is small, but in the same sense as that of the corresponding rigid-rigid 
case. There is a larger phase lag of the flow when P is moderately large than there 
is for rigid-rigid boundary conditions, but as P increases to about 100 the phase 
lag is approximately the same as for the corresponding cases. 

Perhaps the most interesting of the three sets of flow patterns are the free-rigid 
streamlines as a function of F shown in figure 8 for P = 0.1 and 0.3. These 
streamline contours change quite noticeably as the flow becomes nonlinear. At  
P = 1.0 the flow pattern appears similar to those of the other sets of boundary 
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FIGURE 9. Steady-state isotherms as function of F with P = 1.0. (a) Rigid-rigid, F = 1.0. 
Because at F = 1.0 the solution is essentially linear, free-free isotherms are the same. 
( b )  Rigid-rigid, F = 100. (c) Free-free, F = 100. 

conditions although because of the free-rigid boundary conditions there is a 
noticeable concentration of the streamlines near the top of the fluid layer. At 
F = 100 nonlinear interactions have caused the streamlines to  be even more 
compressed near the top of the layer; the descending region has become quite 
narrow, while the upwelling region is spread broadly over the remainder of the 
interval between x = 0 and 27~. Such behaviour is consistent with results of 
Goody & Robinson (1966) and de Rivas (1971). The narrow descending region 
and broad upwelling region are the result of heating only at the top, while the 
concentration of the streamlines at the top is due to the free surface. The phase 
lag of the flow is not sensitive to increases in F.  

There has been some discussion in the literature about how the finite rate of 
momentum and thermal diffusion acts to  produce a tilt in the convection cells 
when the thermal wave is moving (see, for example, Schubert et al. 1970; Hinch & 
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FIGURE 10. Steady-state isotherms as function of B for free-rigid boundary 
conditions with P = 0.3. (a) F = 1.0. ( b )  P = 100. 

Schubert 1971). Such discussions have been for linear cases, or situations where 
the mean flow was much greater than the velocity fluctuations. This charac- 
teristic tilt in the convection cells caused by diffusion produces a correlation 
between the horizontal and vertical velocity components, i.e. a Reynolds stress. 
On the average, horizontal momentum is vertically advected in a direction which 
depends on the sense of the tilt of the cell, the sign of the mean shear being 
determined by (2.6). (When P = 1.0 the cells appear to  have no tilt at all, 
because the mean flow is quite small.) 

This simple picture of the convection cells is no longer valid when the velocity 
fluctuations are larger than the thermal wave phase speed and the mean flow. 
In the interior of the fluid the fluctuating part of the nonlinear interactions is the 
dominant mechanism shaping the convection cells, and, as can be seen from the 
nonlinear streamline patterns just presented, the orientation of the streamlines 
is not always that expected on the basis of the diffusive mechanism discussed 
above. Nevertheless, when an average over 8 wavelength is taken, there is a net 
transport of horizontal momentum in the direction of the mean shear, consistent 
with (2.6). Thus the existence or non-existence of a significant mean flow cannot 
always be determined simply by observing the shape or orientation of the con- 
vection cells. This last comment does not apply to the dividing streamlines, from 
which both the existence and direction of a mean flow can be deduced. 

Isotherms from representative examples for each set of boundary conditions 
are shown in figures 9 and 10. The contours are spaced at intervals of 0.2 (the 
contour corresponding to 27 = 0 is not shown) with a range from - 0.8 to 0.8. 
In  the case P = 1 (figures 9 (a )  and 10 (a)) the isotherms exhibit a characteristic 
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FIGURE 11. Comparison of streamline patterns at S = 10 and S = 50 with F = 10. 
(a) Rigid-rigid, S = 10, P = 1.0. (a) Rigid-rigid, S = 50, P = 1.0. (c) Free-rigid, X = 10, 
P = 0.3. ( d )  Free-rigid, S = 50, P = 0-3. 

tilt, which is due to the thermal wave motion, i.e. there is a phase lag in tempera- 
ture in the interior of the fluid because of the finite thermal diffusion time from 
the boundaries to any interior point. At P = 100 (figures 9 (b) ,  9 ( c )  and 10 ( b ) ) ,  the 
velocity fluctuations have become large enough noticeably to affect the isotherms 
and, as expected, if one refers to the appropriate flow pattern the distortion in the 
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isotherms is seen to correlate with the sense of the fluid velocity. For example, the 
narrowing of the downwelling regions in both the free-rigid case (figure 10(b)) 
and the free-free case (figure 9(c) )  is indicated by pinching of the isotherms in 
these regions. Similarly the narrowness of the upwelling regions in the free-free 
case (figure 9 ( c ) )  is apparent. 

We conclude this subsection with a brief mention of the effect of the parameter 
S on the flow field. Figure 11 ( a )  shows the rigid-rigid case with P = 10, S = 10 
and P = 1-0. This is to be compared with figure 11 (b) ,  which is for the same condi- 
tions but with S = 50. Figure 1 I ( c )  is the free-rigid case with P = 10, S = 10 and 
P = 0.3, and should be compared with figure 11 ( d ) ,  which again is the same case 
except that S = 50. The reason for not showing the S = 50 cases at P = 100 is 
because the F = 100 cases did not reach the steady state. Such non-steady 
situations will be discussed in $8. It is clear from figure 11 that the phase lag of 
the flow pattern increases significantly as S increases from 10 to 50. At smaller 
values of the Prandtl number, however, the increase in the phase lag is less. Also 
apparent from figure 11 is the presence of shear layers at S = 50. For smaller 
values of S (8 = 10 say) such shear layers are found only at  higher values of P. 

6.2. Comparison of stationary and moving thermal sources 
Figure 12 shows nonlinear streamlines for each of the three sets of boundary 
conditions when the thermal wave is stationary and there is no mean flow, (In 
these cases the equations were non-dimensionalized in exactly the same way as 
when the thermal wave was moving, e.g. velocities were non-dimensionalized 
with u,,, etc. Such a non-dimensionalization is convenient for comparison pur- 
poses.) It is important to note that in each of these examples the applied thermal 
wave is symmetric about some phase of the wave, for example, x = 0,  IT, ete. 
During the course of this investigation it has become apparent that there exist 
other quite general situations where stationary periodic thermal sources do in 
fact create mean flows. (Such possibilities were suggested to us by F. H. Busse 
and J. Whitehead.) We shall discuss these situations later in this section, but 
suffice it to point out here that in such cases the thermal source does not have any 
phase about which there is symmetry. 

Two significant differences should be noted between the stationary streamline 
patterns in figure 12 and the patterns when the thermal wave is moving. When 
U = 0, all the streamlines are closed and are mirror images of eaoh other about 
x = 7 ~ .  When the thermal wave is moving and U, + 0, a phase lag exists between 
the flow pattern and the thermal wave, the amount varying with boundary 
conditions and parameter values. Further, all the streamlines are not closed, as 
was discussed at the beginning of this section. 

Apart from these general differences between the situations where ;Ez is or is not 
identically zero, there exist some interesting individual contrasts. For example, 
when F = 100 and P = i.0 (figure 12(b)) the streamlines when U = 0 have 
relatively thin descending and ascending regions, and small eddies have developed 
in the interior of the convection cell (only the eddy in the centre of the cell is 
shown). The presence of these small eddies has been confirmed by refining the 
grids. Similar interior eddies have been observed in natural convection flows in 

12-2 



180 R. E. Young, G. Schubert and K.  E. Torrance 

0 

I I 

1 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I I 
0 t .  n 

FIGURE 12. Steady-state streamlines when thermal wave is stationary for P = 100. Only 
one-half of the pattern is shown in each case because of mirror symmetry about z = 7r. 
P = 100. (a )  Rigid-rigid, P = 0.1. ( b )  Rigid-rigid, P = 1.0. ( c )  Free-free, P = 1.0. 
( d )  Freerigid, P = 0.3. 

enclosures by de Vahl Davis (1968). The corresponding situation when ;El f 0 
(figure 6 (d ) )  has fairly broad upwelling and downwelling regions and no small 
eddies, but it should be noticed that the right convection cell has a much narrower 
descending region than does the left cell. Similarly, the ascending portion of the 
left cell is much narrower than that of the right cell. It can be seen from figures 
12 (a) and 6 (b)  that when P = 0.1 there is little difference in appearance between 
the zero and non-zero U streamlines at the same values of li’ and X (apart from the 
general differences discussed above). 

Because there is no net momentum within the fluid layer for free-free boundary 
conditions, and ;ii is smaller in magnitude than the fluctuations, all the stream- 
lines are closed even when the thermal wave is moving. The flow pattern when 
u 5 0 is shown in figure 12 ( c )  ; and as in the rigid-rigid U = 0 case the descending 
and ascending regions are rather narrow, small eddies having formed in the 
interior of the convection cell. Unlike the rigid-rigid case, however, the U f 0 
streamlines at F = 100 (figure 7 ( b ) )  exhibit the same thinness in the up- and 
downwelling regions as do the streamlines €or U E 0. 

Figure 12 (d )  shows the streamline pattern for free-rigid boundary conditions 
at  F = 100 and P = 0.3 when ZL = 0, and can be compared with figure 8 ( c ) ,  which 
is the same case when U + 0. 

In  the nonlinear free-rigid flow patterns there is a noticeable asymmetry about 
the descending region when the thermal source is moving, especially when 
P = 0.1 at P = 100, figure 8 ( b ) .  This asymmetry is a purely nonlinear effect, 

- 
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FIGURE 13. Comparison of isotherms between stationary symmetric and asymmetric 
thermal sources and between stationary and moving asymmetric thermal sources. Free- 
rigid case, F = 10, P = 0.3, Re = u,d/v  = 1000. ( a )  T = cosx+cos 2x a t  z = 1. 
( b )  T = sinz+sin 2% at z = 1. (c) T = sin (z+t)+sin 2(z+t)  a t  z = 1. 

since at  F = 1-0 (figure 8 (a)) the two convection cells on either side of the down- 
welling region do not exhibit such a pronounced asymmetry. At F = 100, E( 1)  is 
positive at P = 0.1 but negative at P = 0.3. In  figures 8 (b )  and (c)  it can be seen 
that the ‘channel’ consisting of the open streamlines is consistent with the sense 
of the mean flow. 

We briefly mentioned above that certain stationary thermal sources could 
generate mean velocities. To understand how this occurs, recall that a tilt in the 
isotherms tends to tilt the convection cells, thereby creating a Reynolds stress. 
As long as the isotherms are tilted, by whatever mechanism, a non-zero Reynolds 
stress can be expected. If a periodic stationary thermal forcing which is not 
symmetric about any phase is applied, the isotherms are tilted and a mean flow 
is generated. 
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For example, we have considered the following two stationary cases for free- 
rigid boundary conditions : 

cosx+cos2x at z = 1, 
at z = 0; 

(i) T = 

(sinx+sin2x at z = 1 ,  

l o  at z = 0. 
(ii) T = 

In the first case, as in the stationary cases discussed above, no mean flow is 
produced. The reason is that there is symmetry about x = 0, T ,  27r, etc. Thus the 
effect of any tilting or skewing of the isotherms on one side of x = ?T, say, is 
completely cancelled by the opposite tilting or skewing of the isotherms on the 
other side of x = 7r. This is illustrated for the first case in figure 13 (a). However, 
in the second case there is no symmetry about any phase, and there is a net 
effect produced by any tilt or skewness of the isotherms (shown in figure 13(b)). 
From figure 13(b) one would expect a mean velocity to be generated in the 
positive x direction, and such is in fact the case. The phase difference between 
the horizontal and vertical fluctuating velocities necessary to produce a Reynolds 
stress arises principally from the nonlinear convective terms of the vorticity 
equation. This is in contrast to the situation where the thermal source is moving, 
and thermal and momentum diffusion play important roles in creating the 
required phase difference. This point is illustrated in figure 13 (c), which shows 
the effect of moving the applied thermal wave in the case of the second of 
the above sets of boundary conditions, i.e. T = sin (x + t) +sin 2(x + t )  at z = 1. 
In this instance thermal diffusion has tilted the isotherms to the left, and a 
negative mean velocity is generated. Note that the tilt of the isotherms in 
figure 13 ( c )  is much more apparent than in figure 13 (b ) ,  indicating that diffusive 
effects clearly dominate when the source is moving, at  least at  the value F = 10 
for which the examples in figure 13 were computed. The magnitude of the mean 
velocity is a few per cent of the phase speed of the thermal wave when the source 
is moving and is of the same order of magnitude when the source is stationary. 

7. Parameter dependence of velocity components 
Figures 14 and 15 show plots of mean (2, C) and fluctuating velocity (u’) as a 

function of F for various values of P. A very interesting aspect of these figures is 
that in practically all cases the linear expressions for the mean flow and maximum 
absolute value of the horizontal fluctuating velocity have a larger region of 
validity than one would anticipate. Linear theory is strictly justifiable only when 
the fluctuating components of the velocity, and hence the mean flow, are con- 
siderably smaller than the phase speed of the thermal wave. In  the examples, 
however, when P = 10 the horizontal fluctuation reaches magnitudes of the 
order of the wave speed, but evidently the fluctuating parts of the nonlinear 
interactions do not yet significantly affect the average properties of the flow. 
Most of the examples do, however, deviate significantly from an F2 propor- 
tionality before 5 reaches unity, the exception being the free-rigid case where 
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FIGURE 14. Mean velocity as function of F. - - -, P2 dependence. (a)  Mean velocity at 
channel centre: m ,  rigid-rigid, P = 0.1; A, free-free, P = 1.0. ( b )  Free-rigid, P = 0.1 : +, Gmx; +, C. ( c )  Free-rigid, P = 0.3: +, lZ&l; +, ICl. 
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FIGURE 15. Maximum amplitude of horizontal velocity fluctuation as function of F .  
--- , F dependence. x , free-rigid, P = 0.1 ( P  = 0.3 essentially the samo); A, free-freo, 
P = 1.0; 0,  rigid-rigid, P = 0.1; m, rigid-rigid, P = 1.0. 
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P = 0.3. (Calculations at  P = 0.3 with S = 20 or 50 did not reach the steady state 
at F = 100.) 

In the free-free example the departure of U from the F2 law is fairly smooth, 
but in the rigid-rigid case there appears to  be a rather abrupt transition at 
F w 100. The relatively rapid deviation of .ii from the F2 proportionality above 
F = 100 when P = 0-1 in the free-rigid case is a consequence of nonlinear effects 
on the value of the critical Prandtl number (see below). Although IUmaxl obeys the 
F2 dependence up to F = 100 when P = 0.3 (at F = 200 the steady state was not 
reached), the vertically averaged mean flow (GI increases in magnitude faster 
than F2 for F 2 100. Even though .ii is negative when P = 0-3, at values of 
F N 10 a substantial part of the mean flow profile is positive. As F increases, less 
and less of the profile is positive, and hence the magnitude of 6 increases faster 
than F2 in this region. 

In  all the numerical cases the maximum amplitude of the horizontal velocity 
fluctuation was significantly greater than the mean flow magnitude. If the 
fluctuating nonlinear terms in (2.13) are balanced against the buoyancy term 
when F is large, one expects the velocity fluctuation in the interior of the fluid 
to be roughly proportional to F* (assuming there are no thin fast regions), which 
in fact is fairly close to the numerical resultswhen P 100. At most, the mean flow 
might be proportional to F ,  but as F ,  and subsequently the velocity fluctuations, 
become large, nonlinear boundary or shear layers form whose thickness and 
internal behaviour depend on F .  Since the mean flow depends on the phase 
difference between the horizontal and vertical velocity fluctuations as well as 
their magnitudes, the mean flow is likely to be proportional to some power of 
P less than unity. For example, on the basis of crude scaling arguments for 
boundary-layer thickness (Hinch 197 1) etc., for rigid-rigid boundary conditions 
?i is estimated to be proportional to approximately F% when F is large. 

For the parameter values considered the mean flow is only slightly dependent 
on Prandtl number in the rigid-rigid and free-free cases. On the other hand the 
peak magnitudes of the velocity fluctuations when P = 0.1 are about 1.5 times 
the values when P = 1.0. The reason why the mean flow is not considerably 
larger when P = 0.1 than when P = 1.0 lies in the fact that the thermal phase 
lag, which depends on SP, is much less for P = 0.1. The smaller thermal phase 
lag tends to cause a smaller Reynolds stress because the isotherms are not 
tilted as much and this effect evidently compensates for the larger magnitudes of 
tjhe velocity fluctuations when P = 0.1. 

As was discussed before, depending on the value of S ,  the vertically averaged 
mean flow in the free-rigid case can change sign between P = 0.1 and P = 0.3. 
In  the linear case the critical value of P is independent of F ,  independent of S 
when S is small, and proportional to S-% when S is large. As F increases and 
nonlinear effects become important the critical value of P becomes a function of 
F as well as of 8. For example, at S = 20, P = 0.1 with F 2 10, 6 is still positive 
but when F - 100, .ii is negative. When S = 10, .ii is still positive at P = 200, 
indicating that the larger the value of S, the smaller F has to be to cause a 
reversal in the net momentum within the fluid. 

The S dependence of ?i for the parameter values considered in this paper ranged 
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between approximately Sand S2, depending on the particular case. At the higher 
values of S ,  i.e. S N 50, the steady state was not usually achieved when F - 100. 
The reasons for this will be discussed in the next section. The velocity fluctuations 
are rather insensitive to S ,  increasing by only about 20-30 yo at a given F as S 
is increased from 10 to 50. 

8. Non-steady cases 
A survey of those cases which did not reach the steady state reveals that each 

occurred in the upper part of the range of at  least two of the parameters F ,  S or P. 
We have presented no results from these cases because it is probable that 
numerical truncation errors caused the oscillatory behaviour. Consider the 
temperature equation. Regardless of which finite-difference form of the hori- 
zontal advective term mentioned in the numerical description is used there is a 
term of O(Ax) which represents a false diffusion of heat, i.e. the differential 
equation equivalent to the finite-difference equation contains a term KNa2T/ax2, 
where K~ is the dimensionless coefficient arising from the numerical scheme and 
is proportional to the horizontal velocity as well as Ax. (See also the discussion in 
§ 3.) At a given F ,  the larger the quantity SP,  the smaller Ax must be in order 
that the term KNa2T/ax2 be small compared with (1ISP)V;T. Similarly, at a, 
given value of SP, as F increases, and consequently the horizontal velocity 
increases, Ax must decrease to  maintain accuracy. In the vorticity equation a 
similar numerical diffusion term exists and must be small compared with the 
right-hand side of (2.13). In  most cases this is accomplished with a less restrictive 
Ax than that needed to make the energy equation accurate. When the numerical 
diffusion term is not small enough in either equation, it can prevent the steady 
state from being achieved. The obvious remedy of course is to refine the horizontal 
grid, but to do so effectively for the oscillatory cases would have required more 
computer time than we were willing to expend. 

One further point should be mentioned. The Reynolds number Re based on the 
phase speed of the thermal-wave and fluid-layer thickness is equal to SIP. When 
S = 50, Re = 5000, and it is possible that even if numerical errors were not 
important the flow would be turbulent at high values of F. 

9. Effects of initial conditions 
Thus far in the discussion we have considered only the examples which had 

quiescent initial conditions. Thompson ( 1970) investigated numerically a non- 
linear instability mechanism which indicated that initial conditions could be 
important in determining the final steady-state mean velocity. Under very 
special circumstances, Busse (1970) has obtained two solutions to the full non- 
linear equations, each solution being for exactly the same set of parameter values 
and boundary conditions. One of the solutions has an associated mean velocity, 
the other has none. Presumably the solution which a fluid chooses depends on the 
initial conditions. 

In  an attempt to ascertain how the steady-state flow field depends on the  
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initial fluid state, we imposed different initial mean velocity profiles as Thompson 
did. This was done for each set of boundary conditions at P = 100, S = 10 and 
the same values of P used previously. Some runs were made at  S = 100 for 
free-free boundary conditions, but these runs were for relatively small values of 
F because of the effects discussed in the last section. The initial profiles had 
magnitudes comparable to, and in some cases significantly larger than, the 
amplitudes of the velocity fluctuations. 

In  all the examples for which the initial conditions were varied the flow 
eventually reached the same steady state as that obtained using quiescent initial 
conditions. It appears, therefore, that for the range of parameter values we have 
considered in this study the nonlinear instability suggested by Thompson does 
not occur, nor are initial conditions important in determining the steady-state 
flow field. It must be kept in mind, however, that we have treated only a limited 
number of initial states, and it is possible, although we do not believe it likely, 
that some other particular set of initial conditions could alter our conclusion. 

10. Conclusions 
The results we have obtained indicate that at  small to medium values of S ,  

i.e. S 2 50, it appears unlikely that mean flows much larger than the phase speed 
of the thermal wave can be created, even at quite large values of the thermal 
forcing parameter F or small values of the Prandtl number P. [The only case 
which obeys the P2 law up to P = 100 has S = 10 with P = 0.3. At P = 200 the 
steady state was not reached, for reasons discussed above. It is likely, however, 
that once the entire mean velocity profile becomes negative (see discussion on the 
parameter dependence of the mean flow), the dependence on P should begin to 
decrease. This essentially occurs by the time F = 100.1 Although we did not 
consider internal heating or an applied boundary heat flux it is unlikely that our 
conclusion would be altered in these situations. One effect we have not con- 
sidered, and which might be important, is an applied static stratification. Kelly & 
Vreeman (1970) have shown for the linear regime that, when the frequency of the 
applied thermal wave is in resonance with the natural modes of oscillation of the 
fluid layer, Reynolds stresses produced by the internal waves can be the dominant 
mechanism creating the mean shear. We plan to  investigate this phenomenon in 
the nonlinear regime in the near future. Thus, with the possible exception just 
mentioned, the only apparent situation in which it is possible to produce large 
mean flows is when the parameter S is large, perhaps with P simultaneously 
large. 

The generation of mean velocities in a fluid in convective motion is in general 
associated with asymmetries of the thermal forcing (Busse 1970). The motion of 
a heat source introduces such an asymmetry, and because of the motion thermal 
and momentum diffusion play significant roles in creating the phase difference 
between the horizontal and vertical velocity fluctuations required to  produce a 
Reynolds stress. If the thermal forcing is stationary but asymmetric, mean 
flows are generated, but in this situation the phase difference between the velocity 
components arises principally from the nonlinear advective terms. 
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Finally, the nonlinear streamline patterns indicate that the existence and 
direction of a significant mean velocity cannot necessarily be deduced from the 
shape or orientation of the convection cells. 
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